Abstract

This paper focuses on the application of low temperature bonding to the fabrication of three-dimensional (3D) massively parallel signal processors for high performance infrared imagers. We review two generations of the 3D heterogeneous integration process. The first generation process, compatible with pixel sizes in the 20 to 30 µm range, relies on low temperature epoxy bonding that is followed by the formation of copper-filled through-silicon vias (TSVs). The second generation process, scalable to pixel sizes of 10 µm and smaller, employs solid–liquid diffusion bonding of copper–tin to copper at 250 °C; the bonding follows TSV fabrication. To demonstrate the second generation process, we fabricated 3D test vehicles in the form of 640 × 512 arrays of vertical interconnects composed of TSVs and metal–metal bonds on a 10 µm pitch. We characterized electrical conductivity of the interconnects, the isolation resistance between the interconnects, and the operability and yield of the arrays. The successful demonstration of the interconnect technology paves the way to a functional demonstration of 3D signal processors in infrared imagers with 10 µm pixels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.