Abstract

Diffusion of a Brownian particle along a stochastic harmonic oscillator chain is investigated. In contrast to the usually discussed Brownian motion driven by Gaussian white noise, the particle at high temperatures performs long Lévy flights. At high temperatures T the diffusion coefficient scales as D∼T^{2+α}, where the parameter α determine the average damping force ∝1/(T^{α}P) on the particle at large momentum P and at high temperature. The exponent α depends on the particle-chain interaction and chain properties. It is shown that the mean time t[over ¯]_{f} necessary to perform a flight of l lattice constant scales with l as t[over ¯]_{f}∝l^{2/3} at high temperatures and flight lengths. Last, the flight length probability distribution is found to decay as 1/l^{β} with the exponent β=4/3 being universal, i.e., independent of the model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.