Abstract

For characterizing the Brownian motion in a bounded domain: $\Omega$, it is well-known that the boundary conditions of the classical diffusion equation just rely on the given information of the solution along the boundary of a domain; on the contrary, for the L\'evy flights or tempered L\'evy flights in a bounded domain, it involves the information of a solution in the complementary set of $\Omega$, i.e., $\mathbb{R}^n\backslash \Omega$, with the potential reason that paths of the corresponding stochastic process are discontinuous. Guided by probability intuitions and the stochastic perspectives of anomalous diffusion, we show the reasonable ways, ensuring the clear physical meaning and well-posedness of the partial differential equations (PDEs), of specifying `boundary' conditions for space fractional PDEs modeling the anomalous diffusion. Some properties of the operators are discussed, and the well-posednesses of the PDEs with generalized boundary conditions are proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.