Abstract

We present an exact solution for the probability density function P(τ=t_{min}-t_{max}|T) of the time difference between the minimum and the maximum of a one-dimensional Brownian motion of duration T. We then generalize our results to a Brownian bridge, i.e., a periodic Brownian motion of period T. We demonstrate that these results can be directly applied to study the position difference between the minimal and the maximal heights of a fluctuating (1+1)-dimensional Kardar-Parisi-Zhang interface on a substrate of size L, in its stationary state. We show that the Brownian motion result is universal and, asymptotically, holds for any discrete-time random walk with a finite jump variance. We also compute this distribution numerically for Lévy flights and find that it differs from the Brownian motion result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call