Abstract

Modern multicore systems are migrating from homogeneous systems to heterogeneous systems with accelerator-based computing in order to overcome the barriers of performance and power walls. In this trend, FPGA-based accelerators are becoming increasingly attractive, due to their excellent flexibility and low design cost. In this paper, we propose the architectural support for efficient interfacing between FPGA-based multi-accelerators and chip-multiprocessors (CMPs) connected through the network-on-chip (NoC). Distributed packet receivers and hierarchical packet senders are designed to maintain scalability and reduce the critical path delay under a heavy task load. A dedicated accelerator chaining mechanism is also proposed to facilitate intra-FPGA data reuse among accelerators to circumvent prohibitive communication overhead between the FPGA and processors. In order to evaluate the proposed architecture, a complete system emulation with programmability support is performed using FPGA prototyping. Experimental results demonstrate that the proposed architecture has high-performance, and is light-weight and scalable in characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call