Abstract

The rotation period of Saturn’s magnetosphere was found to vary with time, and changing periodicities were identified in magnetic fields, radio emissions, and charged particles. Here we analyze the varying period of Saturn kilometric radiation (SKR) from 2009 to early 2013, i.e. mainly after Saturn equinox of August 2009. A periodicity analysis is first applied to the complete SKR signal, and second to SKR intensities separated by spacecraft latitude and wave polarization, attributed to SKR from the northern and southern hemisphere. Our analyses are done with the tracking filter approach of Gurnett et al. (Gurnett et al. [2009a]. Geophys. Res. Lett. 36, L16102) and by simply tracing the phases of normalized SKR intensity maxima (north and south) with time. It is shown that SKR periods from the northern and southern hemisphere converged during 2009, crossed shortly after equinox, and coalesced in spring 2010. We will show that SKR from both hemispheres not only exhibited similar periods, but also similar phases from March 2010 until February 2011 and from August 2011 until June 2012. The in-between time interval (March to July 2011) shows a slowdown of the southern SKR rotation rate and a slight increase in rotation speed for the northern SKR before rotation rates and phases become equal again in August 2011. We also identify SKR signals where the modulation phase deviation exceeds one rotation each time Cassini completes one orbit, i.e. this is consistent with the characteristic of a rotating signal. However, the main SKR modulation signals from 2009 to 2012 can be viewed as being clock-like with no correction needed for the derived periods. A comparison of SKR periodicities after equinox to the planetary period oscillations of the magnetic field shows major differences, and we compare SKR phases to magnetic field phases to explain the deviations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call