Abstract

This paper presents fully-kinetic numerical investigations of the charging of spherical and irregular dust grains in the OML sheath regime and a stationary experimental plasma environment utilizing the Dusty Parallel Immersed-Finite-Element Particle-in-Cell (PIFE-PIC-D) framework. The simulations account for surface charging of the dust grains immersed in an stationary plasma environment. PIFE-PIC-D explicitly resolves the geometrical and material properties (permittivity) of each individual dust grain. The charge collection over time of each dust grain is investigated with varying size, irregularity, number of grains, spacing between dust grains, and permittivity. The charging behavior of a dust cluster is estimated by calculating its electron Debye length edge-to-edge separation to offer valuable insights into a dust cluster’s general charge dynamics. Lastly, unlike prior studies that focused solely on either fully conducting spheres or perfectly dielectric spheres, this work explores a more comprehensive range of permittivities for irregular dust grain aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.