Abstract

AbstractSea-ice volume fluxes through Fram Strait, Arctic Ocean, are estimated for the two Icesat measurement periods in February/March and October/November 2003 by combining Sea-ice area fluxes, determined from Space-borne microwave observations, with estimates of the Sea-ice thickness distribution, inferred from measurements of Icesat’s Geoscience Laser Altimeter System (GLAs) instrument. The thickness is derived from Icesat data by converting its Surface elevation measurements into an ice freeboard estimate. Combined with prior information about ice density and Snow depth and density, the freeboard is converted into ice thickness. Uncertainties in freeboard estimates due to geoid model errors are reduced through the use of the recent geoid from the Arctic Gravity Project. Missing information about the ocean circulation and ocean tides is approximated locally by interpolating the Sea Surface height linearly between open leads. Meridional ice volume fluxes estimated for 79˚N using ice drift observed by AMSR-E (QuiksCAT) amount to 168 km3(236km3) and 62 km3(77 km3) for 30 day periods in February/March and October/November 2003, respectively. These values lie in the range of previous results from Similar Studies, but are considerably Smaller than the average ice flux during the 1990s, most likely because of a Smaller ice-drift Speed during 2003.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.