Abstract

Abstract We estimate sea-ice type specific incidence angle (IA) dependencies for dual polarized (HH/HV) L and C-band synthetic aperture radar (SAR) for the winter, melt onset and advanced melt seasons for level and deformed ice, using time-series of Advanced Land Observing Satellite-2 (ALOS-2) and Sentinel-1 imagery off the north-east coast of Greenland. The IA dependencies are used to radiometrically correct the L and C-band backscatter time-series, which enables analysis of their seasonal evolution. From this, we observe that the L-band backscatter intensity increases for both ice types at the transition from winter to melt onset. We use these results to estimate ice type separability and to train an IA aware Bayesian classifier at both frequencies. These results show that while both frequencies are capable of distinguishing level and deformed ice during the winter, only L-band SAR can reliably make this separation during the melt onset season. During the advanced melt season, the overall classification accuracies are similarly low for L and C-band. This study demonstrates the potential of L-band SAR for sea-ice mapping, which is highly relevant in the light of several upcoming L-band SAR missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.