Abstract
Kernel methods with specifically designed kernel function are suitable for dealing with practical nonlinear problems. However, kernel methods have found limited applications to synthetic aperture radar (SAR) image change detection in that their performances are affected by the inherent multiplicative speckle noise of SAR images. It is known that the spatial-contextual information is helpful in suppressing the degrading effects of the noise. Therefore, a label-information composite kernel ( LIC kernel ) constructed on the basis of the spatial-contextual information is proposed in this paper for SAR image change detection. A typical spatial information, the output-space label-neighborhood information that is extracted using all labels in the neighborhood of each pixel, may enhance noise immunity, but with inaccurate edge locations simultaneously. Consequently, the anisotropic Gaussian kernel model is utilized for analyzing anisotropic textures of the bitemporal images, and then, a comparison scheme acting on the input-space textures of the bi-temporal images is proposed to supervise the extraction of the output-space label-neighborhood information in the construction of the LIC kernel . The constructed LIC kernel is of good preservation of edge locations of changed areas as well as strong noise immunity. The LIC kernel is updated iteratively with the newest change map outputted from the support vector machine, until the change map converges. Experiments on real SAR images demonstrate the effectiveness of the LIC kernel method and illustrate that it has both strong noise immunity and good preservation of edge locations of changed areas for SAR image change detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have