Abstract
ABSTRACTStructural information, extracted by simulating the human visual system (HVS), is independent of viewing conditions and individual observers. Structural similarity (SSIM), a measure of similarity between two images, has been widely used in image quality assessment. Given the fact that the change detection techniques identify the changed area by the similarity of multi-temporal images, SSIM has significant prospect in change detection of synthetic aperture radar (SAR) images. However, the experimental results show that SSIM performs worse in change detection of multi-temporal SAR images. In this study, we first propose an advanced SSIM (ASSIM) based on a two-step assumption of extracting structural information and a visual attention measure (VAM) model. Then, we propose a novel approach based on ASSIM for change detection in SAR images. SSIM, ASSIM, and state-of-the-art methods are tested on two datasets to compare their performances in change detection of SAR images. Experimental results show that the proposed method can acquire a better difference image than SSIM and other state-of-the-art methods, and improve the accuracy of change detection in SAR images effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.