Abstract
In the field of robotic assembly, deep reinforcement learning (DRL) has made a great stride in the simulated performance and holds high promise to solve complex robotic manipulation tasks. However, a huge number of efforts are still needed before RL algorithms could be implemented in the real-world tasks directly due to the risky but insufficient interactions. Additionally, there is still a lack of analyzation in the sample-efficiency, stability and generalization ability of RL algorithms. As a result, Sim2Real, analyzing RL algorithms in simulation and then implementing in real-world tasks, has become a promising solution. Peg-in-hole assembly is one of the fundamental forms of the robotic assembly in industrial manufacturing. In the paper, we set up a simulation platform with physical contact models of both single and multiple peg assembly configurations; we then provide the commonly used RL algorithms with an empirical study of the sample-efficiency, stability and generalization, ability; we further propose a new algorithm framework of Actor-Average-Critic (AAC) for better stability and sample-efficiency performance. Besides, we also analyze the existing reinforcement learning with hierarchical structure (HRL) and demonstrate its better generalization ability into new assembly tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.