Abstract

The osmoregulation system of freshwater fish is sensitive to salinity increase in water. There is no satisfactory data to our knowledge on the accumulation of metal-oxide nanoparticles (NPs) in tissues of O. niloticus and their effects on ATPases (Na,K-ATPase, Mg-ATPase, Ca-ATPase) in differing salinities. Thus, this study investigated the effects of salinity (0 and 10 ppt) and Al2O3 and TiO2 NPs (1 and 10 mg NPs/L) on the response of ATPases in acute (2 days) and chronic (20 days) durations. Data showed that nanoparticles accumulated in the tissues of fish, gill tissues having the highest levels of Al and Ti in both acute and chronic durations. Interestingly, the higher salinity significantly increased (P < 0.05) NP accumulations in the tissues in acute exposures, whereas it significantly decreased (P < 0.05) in chronic exposures. Salinity increase caused significant decreases (P < 0.05) in ATPase activities (up to 54 %) in control fish from both exposure protocols. Likewise, NP alone exposures (up to 80 %) and salt+NP (up to 83 %) exposures generally caused significant (P < 0.05) decreases in ATPase activities compared to their controls. Similarly, salt+NP exposures also decreased ATPase activities compared to NP exposures alone. The present data demonstrated that salinity and/or NP exposures decreased ATPase activities in the gill of freshwater fish, emphasizing the possible hazardous consequences of salt inputs and NP discharges into freshwater systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.