Abstract

The mechanism of nucleotide binding and hydrolysis by dnaB protein and dnaB X dnaC protein complex has been studied by using fluorescent nucleotide analogues. Binding of trinitrophenyladenosine triphosphate (TNP-ATP) or the corresponding diphosphate (TNP-ADP) results in a blue shift of the emission maximum and a severalfold amplification of the fluorescence emission of the nucleotide analogues. Scatchard analysis of TNP-ATP binding indicates that TNP-ATP binds with a high affinity (Kd = 0.87 microM) and a 8.5-fold enhancement of fluorescence emission of the nucleotide. Only three molecules of TNP-ATP or TNP-ADP bind per hexamer of dnaB protein in contrast to six molecules of ATP or ADP binding to a dnaB hexamer. TNP-ATP and TNP-ADP are both competitive inhibitors of single-stranded (SS) DNA-dependent ATPase activity of dnaB protein. TNP-AMP neither binds to dnaB protein nor inhibits the ATPase activity. Formation of dnaB X dnaC complex by dnaC protein results in diminution of the TNP-ATP fluorescence enhancement and a concomitant decrease in the SS DNA-dependent ATPase activity. Kinetic analysis of the ATPase activity of dnaB X dnaC complex indicates that the decrease in the ATPase activity on complex formation is due to a reduction of the maximal velocity (Vmax). The dnaB protein hydrolyzes both TNP-ATP and dATP, however, with an extremely slow rate in the presence of single-stranded M13 DNA. The 2'-OH group of the nucleotide most likely plays an important role in the hydrolysis reaction but not in the nucleotide binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call