Abstract

The paper is focused on how to apply the probabilistic safety assessment (PSA) methodology to assess the nuclear safety risks associated with the transportation of radioactive material. The methodology is comprehensive and covers the different modes of transport (for example, by road, by train, by ship, and by air) used for the transportation of radioactive material. The proposed methodology can be applied to any specific mode of transportation of radioactive material as well as to any specific country. This paper focuses on application of this methodology for transportation of radioactive material by train. The systematic assessment starts with the identification of the risk associated with the transportation mode and its initiating events to analyze what can go wrong in the transportation of radioactive material and how likely it can be. An accident involving radioactive material has sensitive information, and such information is not publicly available. Therefore, generic accident data can be utilized to develop probabilistic models and quantify the risk associated with radioactive material transportation. Another fact is that radioactive material transportation accidents are extremely rare; hence, associated statistics are insufficient for the development of PSA models, so generic accident data can be used to predict accident frequency. The paper explores the feasibility of using probabilistic methods to assess the safety risks associated with radioactive material transport. The paper describes how to perform a comprehensive probabilistic assessment and create a generic accident event tree that is based on train accident data. The focus of the event tree is to outline a range of different train accident scenarios and their respective probabilities of occurrence and their consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.