Abstract

An analytic reversible Hamiltonian system with two degrees of freedom is studied in a neighborhood of its symmetric heteroclinic connection made up of a symmetric saddle-center, a symmetric orientable saddle periodic orbit lying in the same level of a Hamiltonian, and two non-symmetric heteroclinic orbits permuted by the involution. This is a codimension one structure; therefore, it can be met generally in one-parameter families of reversible Hamiltonian systems. There exist two possible types of such connections depending on how the involution acts near the equilibrium. We prove a series of theorems that show a chaotic behavior of the system and those in its unfoldings, in particular, the existence of countable sets of transverse homoclinic orbits to the saddle periodic orbit in the critical level, transverse heteroclinic connections involving a pair of saddle periodic orbits, families of elliptic periodic orbits, homoclinic tangencies, families of homoclinic orbits to saddle-centers in the unfolding, etc. As a by-product, we get a criterion of the existence of homoclinic orbits to a saddle-center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call