Abstract
We study the multiple periodic orbits of Hill’s problem with oblate secondary. In particular, the network of families of double and triple symmetric periodic orbits is determined numerically for an arbitrary value of the oblateness coefficient of the secondary. The stability of the families is computed and critical orbits are determined. Attention is paid to the critical orbits at which families of non-symmetric periodic orbits bifurcate from the families of symmetric periodic orbits. Six such bifurcations are found, one for double-periodic and five for triple-periodic orbits. Critical orbits at which families of sub-multiple symmetric periodic orbits bifurcate are also discussed. Finally, we present the full network of families of multiple periodic orbits (up to multiplicity 12) together with the parts of the space of initial conditions corresponding to escape and collision orbits, obtaining a global view of the orbital behavior of this model problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.