Abstract
Smoking plays an underappreciated role in breast cancer progression, increasing recurrence and mortality in patients. Here, we show that S100A8/A9 innate immune signaling is a molecular mechanism that identifies smoking-related breast cancers and underlies their enhanced malignancy. In contrast to acute exposure, chronic nicotine increased tumorigenicity and reprogrammed breast cancer cells to express innate immune response genes. This required the α7 nicotinic acetylcholine receptor, which elicited dynamic changes in cell differentiation, proliferation, and expression of secreted cytokines, such as S100A8 and S100A9, as assessed by unbiased scRNA-seq. Indeed, pharmacologic or genetic inhibition of S100A8/A9-RAGE receptor signaling blocked nicotine's tumor-promoting effects. We also discovered Syntaphilin (SNPH) as an S100A8/A9-dependent gene enriched specifically in estrogen receptor-negative (ER-) cancers from former smokers, linking this response to patient disease. Together, our findings describe a new α7 nAChR-S100A8/A9-Syntaphilin immune signaling module that drives nicotine-induced tumor progression and distinguishes smoking-related patient disease as a distinct subset of aggressive breast cancers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have