Abstract
Five silicon (Si) p++–n−–n++ samples were grown at various doping concentrations (1.0 × 1017–2.2 × 1017 cm−3) in an n− layer by using the reduced-pressure CVD technique. By using these samples, 30 × 2 µm2 single-drift (SD) impact-ionization avalanche transit-time (IMPATT) diodes were processed with Si-based monolithic millimeter-wave integrated circuit (SIMMWIC) technology.,) The samples within a small process window exhibited a large negative differential resistance at approximately the avalanche frequency, as confirmed by small-signal S-parameter characterization. A model based on depletion width was given to explain the conditions for the appearance of the negative differential IMPATT resistance, which is the basis of millimeter-wave amplifier and oscillator applications. Furthermore, a measurement-based small-signal lumped-element model was established to describe the IMPATT functionality from the circuit component aspect. This lumped-element model shows a negative differential resistance within a well-defined range in the given element parameters, which can explain the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.