Abstract
Abstract. Mapping of parking spaces in cities is a prerequisite for future applications in parking space management like community-based parking. Although terrestrial or vehicle based sensors will be the favorite data source for parking space mapping, airborne monitoring can play a role in building up city wide basis maps which include also parking spaces on ancillary and suburban roads. We present a novel framework for automatic city wide classification of vehicles in moving, stopped and parked using aerial image sequences and information from a road database. The time span of observation of a specific vehicle during an image sequence is usually not long enough to decide unambiguously, whether a vehicle stopped e.g. before a traffic light or is parking along the road. Thus, the workflow includes a vehicle detection and tracking method as well as a rule-based fuzzy-logic workflow for the classification of vehicles. The workflow classifies stopped and parked vehicles by including the neighbourhood of each vehicle via a Delaunay-Graph. The presented method reaches correctness values of around 86.3%, which is demonstrated using three different aerial image sequences. The results depend on several factors like detection quality and road database accuracy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have