Abstract
The concept of entropic forces is introduced to demonstrate a new method to calculate the convective state of a cluster in rain clouds, associated with hurricanes and tornados. A derivation of these internal cloud forces, involving the ratio of the angular speed and terminal velocity of rotating clouds, compared to convectivity, which characterizes the ratio of latent heating and dissipation rates, has been shown to adequately characterize a hurricane’s state. The existence and properties of the entropic forces driving the associated dynamics are shown to reveal the interactive conditioning of the individual clouds by the ratio of rotational momentum, and that of the release of heat upon condensation, to that by turbulent dissipation. The method requires a microwave/millimeter radar to locally compute the foundational properties before derivation of the overall hurricane state. <i>Statement of Importance: </i>A potential link between AI and entropic forces has been suggested by others. By the definition, offered by IBM ‘Artificial intelligence, or AI, is technology that enables computers and machines to simulate human intelligence and problem-solving capabilities’. In this paper, it is demonstrated that there is a computational algorithm which translates remotely sensed, strongly convectivity imagery into a numerical statement of ‘hurricane state’, and one which further uses simple mathematical statements of deduced forces in radar imagery. It is further deduced that the current AI computation of hurricane state from a GOES satellite should be extended to isolate radial flow in such rotating areas. It may also be that such areas have a locally different radiational temperature associated with local overshooting within a cluster.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have