Abstract

Abstract.A novel mechanism for the generation of large-scale zonal flows by small-scale Rossby waves in the Earth's ionospheric E-layer is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude magnetized Rossby waves. To describe this process a generalized Charney equation containing both vector and scalar (Korteweg–de Vries type) nonlinearities is used. The magnetized Rossby waves are supposed to have arbitrary wavelengths (as compared with the Rossby radius). A set of coupled equations describing the nonlinear interaction of magnetized Rossby waves and zonal flows is obtained. The generation of zonal flows is due to the Reynolds stresses produced by finite amplitude magnetized Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the magnetized Rossby pump wave. Explicit expression for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. A comparison with existing results is carried out. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call