Abstract
It is shown that in the Earth's weakly ionized ionospheric E-layer with the dominant Hall conductivity, a new type of coupled Rossby–Alfvén–Khantadze (CRAK) electromagnetic (EM) planetary waves, attributable by the latitudinal inhomogeneity of both the Earth's Coriolis parameter and the geomagnetic field, can exist. Under such coupling, a new type of dispersive Alfvén waves is revealed. The generation of a sheared zonal flow and a magnetic field by CRAK EM planetary waves is investigated. The nonlinear mechanism of the instability is based on the parametric excitation of a zonal flow by interacting four waves, leading to the inverse energy cascade in the direction of a longer wavelength. A three-dimensional (3D) set of coupled equations describing the nonlinear interaction of pumping CRAK waves and zonal flow is derived. The growth rate of the corresponding instability and the conditions for driving them are determined. It is found that the growth rate is mainly stipulated by Rossby waves but the generation of the intense mean magnetic field is caused by Alfvén waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.