Abstract

Nonlinear dynamics of coupled internal-gravity (IG) and alfvén electromagnetic planetary waves in the weakly ionized ionospheric E-layer is investigated. Under such coupling new type of alfvén waves is revealed. It is shown that such short wavelength turbulence of IG and alfvén waves is unstable with respect to the excitation of low-frequency and large-scale perturbations of the zonal flow and magnetic field. A set of coupled equations describing the nonlinear interaction of coupled IG and alfvén waves with zonal flows is derived. The nonlinear mechanism of the instability is driven by the advection of vorticity and is based on the parametric excitation of convective cells by finite-amplitude coupled IG and alfvén waves leading to the inverse energy cascade toward the longer wavelength. The growth rates of the corresponding instability and the conditions for driving them are determined. The possibility of generation of the intense mean magnetic field is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.