Abstract

AbstractThe influence of non-monochromaticity on low-frequency, large-scale zonal-flow nonlinear generation by small-scale magnetized Rossby (MR) waves in the Earth's ionospheric E-layer is considered. The modified parametric approach is used with an arbitrary spectrum of primary modes. It is shown that the broadening of the wave packet spectrum of pump MR waves leads to a resonant interaction with a growth rate of the order of the monochromatic case. In the case when zonal-flow generation by MR modes is prohibited by the Lighthill stability criterion, the so-called two-stream-like mechanism for the generation of sheared zonal flows by finite-amplitude MR waves in the ionospheric E-layer is possible. The growth rates of zonal-flow instabilities and the conditions for driving them are determined. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere and in laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.