Abstract

Abstract Background and aims Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms establishing mutualistic symbioses with most crop plants and promoting plant growth and health. AMF beneficial activities are complemented by their associated microbiota, leading to synergistic interactions positively affecting plant performance. In this work we assessed whether AMF may act as drivers of root bacterial endophytes, facilitating root colonization of host plants by their associated bacteria. Methods Two AMF isolates were used, Funneliformis mosseae from Indiana (USA) and Septoglomus sp. from Tuscany (Italy) in an original experimental microcosm system, utilizing micropropagated plants of Prunus persica x Prunus amygdalus inoculated with either intact or mechanically crushed AMF spores, the former able and the latter unable to establish the symbiosis. Spore and root endophytic bacterial communities diversity were analysed by Illumina Miseq sequencing. Results This study revealed that AMF with their associated bacteria can shape the root endophytic bacterial communities, inducing differential recruitment depending on the composition of spore-associated microbiota. Such data were consistent between two AMF isolates, associated with diverse bacterial communities, as shown by PERMANOVA, Bray Curtis dissimilarity, hierarchical clustering and indicator species analyses. Moreover, specific bacterial taxa were found exclusively in mycorrhizal roots. Our findings suggested also a differential recruitment depending on the ability of AMF to establish mycorrhizal symbioses. Conclusion This work revealed that AMF represent drivers of the endophytic bacterial communities diversity and composition, facilitating root colonization of host plants by their associated bacteria, that become an integral part of the root microbiome as endophytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.