Abstract

Room-temperature (RT) ferromagnetic atomically thin transition metal chalcogenides (TMCs) provide a novel platform for discovering new physical phenomena in the two-dimensional (2D) limit and developing the next-generation spintronic applications. Recent progress in exploring the RT ferromagnetism in 2D TMCs have attracted significant interest from experimental and theoretical scientists; However, the semiconducting TMCs are non-magnetic. In parallel, the inconsistency of magnetism between density functional theory (DFT) calculations and experimental results persist in both TMC semiconductors and metals. We review the strategies for RT ferromagnetism in 2D TMC semiconductors and the origin of RT ferromagnetism in 2D TMC metals, followed by the discussion of promising future directions in the area of RT ferromagnetic 2D TMC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.