Abstract

The influence of magnetic field on the plasma which is one of the oldest problems in plasma physics and remains of great interest in plasma fusion studies, recently has been an important problem in many plasma discharge used in processing semiconductor materials, because the application of a magnetic field results in enhancement of some desirable features of specific plasma sources. In this paper, the transverse magnetic field effects on the radio frequency capacitive discharge of low and intermediate gas pressure (1.33 Pa∼40.00 Pa) are reviewed to clarify the role of the magnetic field in the capacitive discharge. Lots of physical phenomena induced by transverse magnetic field, such as power dissipation mode transition, low energy electron heating/cooling, axial variation of electron density and temperature and E × B drift are presented and analyzed. This article is expected to provide qualitative insight to understand the role of magnetic field in the capacitive discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.