Abstract

The purpose of this investigation was to study the effects of a distinct type of phospholipase C on sarcolemmal Na+-Ca2+ exchange. With this phospholipase C (Staphylococcus aureus), treatment of cardiac sarcolemmal vesicles resulted in a specific hydrolysis of membrane phosphatidylinositol. This hydrolysis of phosphatidylinositol also released two proteins (110 and 36 kDa) from the sarcolemmal membrane. Phospholipase C pretreatment of the sarcolemma resulted in an unexpected stimulation of Na+-Ca2+ exchange. The Vmax of Na+-Ca2+ exchange was increased but the Km for Ca2+ was not altered. This stimulation was specific to the Na+-Ca2+ exchange pathway. ATP-dependent Ca2+ uptake was depressed after phospholipase C treatment, but passive membrane permeability to Ca2+ was unaffected. Sarcolemmal Na+,K+-ATPase activity was not altered, whereas passive Ca2+ binding was modestly decreased after phospholipase C pretreatment. The stimulation of Na+-Ca2+ exchange after phosphatidylinositol hydrolysis was greater in inside-out vesicles than in a total population of vesicles of mixed orientation. This finding suggests that the cardiac sarcolemmal Na+-Ca2+ exchanger is functionally asymmetrical. The results also suggest that membrane phosphatidylinositol is inhibitory to the Na+-Ca2+ exchanger or, alternatively, this phospholipid may anchor an endogenous inhibitory protein in the sarcolemmal membrane. The observation that a transsarcolemmal Ca2+ flux pathway may be stimulated solely by phosphatidylinositol hydrolysis independently of phosphoinositide metabolic products like inositol triphosphate is novel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call