Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is activated by numerous inflammatory mediators and environmental stresses. We assessed the effects of ultraviolet B (UVB) on the p38 MAPK pathway and determined whether cyclooxygenase (COX)-2 expression is downstream of this kinase in the skin of UVB-irradiated SKH-1 mice. SKH-1 mice were irradiated with a single dose of UVB (360 mJ per cm2), and activation of the epidermal p38 MAPK pathway was assessed. UVB-induced phosphorylation of p38 MAPK occurred in a time-dependent manner. Phosphorylation of MAPK-activated protein kinase-2 (MAPKAPK-2) also was detected and correlated with an increase in its kinase activity. Phosphorylation of heat shock protein 27 (HSP27), a substrate for MAPKAPK-2, also was detected post-irradiation. Oral administration of the p38 inhibitor, SB242235, prior to UVB irradiation, blocked activation of the p38 MAPK cascade, and abolished MAPKAPK-2 kinase activity and phosphorylation of HSP27. Moreover, SB242235 inhibited expression of the pro-inflammatory cytokines interleukin (IL)-6 and KC (murine IL-8) and COX-2. Our data demonstrate that UVB irradiation of murine skin activates epidermal p38 MAPK signaling and induces a local pro-inflammatory response. Blockade of the p38 MAPK pathway may offer an effective approach to reducing or preventing skin damage resulting from acute solar radiation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have