Abstract

Mitochondria are deeply involved in the production of reactive oxygen species through one-electron carriers in the respiratory chain; mitochondrial structures are also very susceptible to oxidative stress as evidenced by massive information on lipid peroxidation, protein oxidation, and mitochondrial DNA (mtDNA) mutations. Oxidative stress can induce apoptotic death, and mitochondria have a central role in this and other types of apoptosis, since cytochrome c release in the cytoplasm and opening of the permeability transition pore are important events in the apoptotic cascade. The discovery that mtDNA mutations are at the basis of a number of human pathologies has profound implications: maternal inheritance of mtDNA is the basis of hereditary mitochondrial cytopathies; accumulation of somatic mutations of mtDNA with age has represented the basis of the mitochondrial theory of ageing, by which a vicious circle is established of mtDNA damage, altered oxidative phosphorylation and overproduction of reactive oxygen species. Experimental evidence of respiratory chain defects and of accumulation of multiple mtDNA deletions with ageing is in accordance with the mitochondrial theory, although some other experimental findings are not directly ascribable to its postulates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call