Abstract

Mutations in the mitochondrial genome (mtDNA) are thought to be one of the causes of age-dependent cellular decline through their detrimental effects on respiration or reactive oxygen species (ROS) production. However, for many mutations, this link has not been clearly established. This study aimed to further investigate the phenotypic importance of a T414G mutation within the control region of mtDNA, previously shown to accumulate in both chronologically and photoaged human skin. We demonstrate that during dermal skin fibroblast replication in vitro in five separate cultures obtained from elderly individuals, the T414G mutant load can either increase or decrease during progressive cell division, implying the absence of consistent selection against the mutation in this context. In support of this, by utilizing a cell-sorting approach, we demonstrate that the level of the T414G mutation does not directly correlate with increased or decreased mtDNA copy number, or markers of cellular ageing including lipofuscin accumulation or ROS production. By consequence, the mutation can be distributed with a bias towards either the proliferating or senescent cell populations depending on the cell line. In conclusion, we propose that this particular mutation may have little effect on ROS production and the onset of cellular senescence in cultured fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.