Abstract
We study how impurities influence the current-induced dynamics of magnetic Skyrmions moving in a racetrack geometry. For this, we solve numerically the generalized Landau-Lifshitz-Gilbert equation extended by the current-induced spin transfer torque. In particular, we investigate two classes of impurities, non-conducting and magnetic impurities. The former are magnetically rigid objects and yield to an inhomogeneous current density over the racetrack which we determine separately by solving the fundamental electrostatic equations. In contrast, magnetic impurities leave the applied current density homogeneous throughout the stripe. Depending on parameters, we observe four different scenarios of Skyrmion motions in the presence of disorder, the Skyrmion decay, the pinning, the creation of additional Skyrmions, and ordinary Skyrmion passage. We calculate and discuss phase diagrams in dependence of the impurity concentration and radii of the impurities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.