Abstract
We consider current-induced spin-transfer torque on an antiferromagnet in a dual spin-valve setup. It is demonstrated that a net magnetization may be induced in the AFM by partially or completely aligning the sublattice magnetizations via a current-induced spin-transfer torque. This effect occurs for current densities ranging below 10$^6$ A/cm$^2$. The direction of the induced magnetization in the AFM is shown to be efficiently controlled by means of the magnetic configuration of the spin-valve setup, with the anti-parallell configuration yielding the largest spin-transfer torque. Interestingly, the magnetization switching time-scale $\tau_\text{switch}$ itself has a strong, non-monotonic dependence on the spin-valve configuration. These results may point toward new ways to incorporate AFMs in spintronic devices in order to obtain novel types of functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.