Abstract

In p-i-n structure a-Si solar cell a buffer layer with proper characteristics plays important role in improving the p/i interface of the cell, reducing mismatch of band gaps and number of recombination centres. However for p-i-n structure microcrystalline ( µc-Si: H) cell which has much less light induced degradation than a-Si:H cell, not much work has been done on development of proper buffer layer and its application to µc-Si:H cell. In this paper we have reported the development of two intrinsic oxide based microcrystalline layer having different characteristics for use as buffer layers at the p/i interface of µc-Si:H cell. Previously SiOx:H buffer layer has been used at the p/i interface which showed positive effects. To explore the possibility of improving the performance of p-i-n structure µc-Si:H cell further we have thought it interesting to use two buffer layers with different characteristics at the p/i interface. The two buffer layers have been characterized in detail and applied at the p/i interface of the µc-Si:H cell with positive effects on all the PV parameters mainly improves the open circuit voltage (Voc) and enhances short circuit current (Isc). The maximum initial efficiency obtained is 8.97% with dual buffer which is 6.7% higher than that obtained by using conventional single buffer layer at the p/i interface. Stabilized efficiency of the cell with dual buffer is found to be ~9.5% higher than that with single buffer after 600h of light soakings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call