Abstract

Chromium oxide coatings were deposited by reactive magnetron sputtering on high speed steel (HSS) substrate under various oxygen flow rates and radio frequency (RF) powers. The effect of deposition conditions on the microstructure, hardness and critical load of chromium oxide coating failure was studied. The results indicated that a crystalline chromium oxide coating formed at a high oxygen flow rate and a low RF power exhibited a higher hardness and a lower critical load as compared to a chromium oxide coating with an amorphous microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.