Abstract

Several research studies have shown that future sustainable electricity systems, mostly based on renewable generation and storage, are feasible with today's technologies and costs. However, recent episodes of extreme weather conditions, probably associated with climate change, cast shades of doubt on whether the resulting generation portfolios are sufficiently robust to assure, at all times, a suitable balance between generation and demand, when adverse conditions are faced. To address this issue, this work elaborates a methodology intended to determine a sustainable electricity generation system, that can endure extreme weather conditions which are likely to occur. First, using hourly production and demand data from the last decade, along with estimates of new uses of electricity, a worst-case scenario is constructed, including the storage capacity and additional photovoltaic power which are needed to serve the demand on an hourly basis. Next, several key parameters which may have a significant influence on the LCOE are considered, and a sensitivity analysis is carried out to determine their real impact, significance and potential trends. The proposed methodology is then applied to the Spanish system. The results show that, under the hypotheses and conditions considered in this paper, it is possible to design a decarbonized electricity system that, taking advantage of existing sustainable assets, satisfies the long-term needs by providing a reliable supply at an average cost significantly lower than current market prices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call