Abstract

A method is presented for synthesizing output estimators for a class of continuous time, uncertain, linear parameter-varying (LPV) systems. The uncertain system is described as an interconnection of a nominal LPV system and a block structured perturbation. The nominal LPV system is “gridded” over the space of parameters, with the state matrices being arbitrary functions of the parameters. The input/output behavior of the perturbation is described by integral quadratic constraints. The main contribution of this paper is the derivation of convex conditions for the synthesis of output estimators for uncertain, grid-based LPV plants. Since LPV systems do not have valid frequency response interpretations, the time domain, dissipation inequality approach is followed. Robust performance is measured using the upper-bound on the worst-case induced-L2 gain of the closed loop. The effectiveness of the proposed method is demonstrated using a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.