Abstract
ABSTRACT A transgenic protein is frequently expressed as different homologous variants in genetically modified crops due to differential processing of targeting peptides or optimization of activity and specificity. The aim of this study was to develop a science-based approach for risk assessment of homologous protein variants using dicamba mono-oxygenase (DMO) as a case study. In this study, DMO expressed in the next-generation dicamba-tolerant maize, sugar beet and soybean crops exhibited up to 27 amino acid sequence differences in the N-terminus. Structure modeling using AlphaFold, ESMFold and OpenFold demonstrates that these small N-terminal extensions lack an ordered secondary structure and do not disrupt the DMO functional structure. Three DMO variants were demonstrated to have equivalent immunoreactivity and functional activity ranging from 214 to 331 nmol/min/mg. Repeated toxicity studies using each DMO variant found no test substance-related adverse effects. These results support that homologous protein variants, which have demonstrated physicochemical and functional equivalence, can leverage existing safety data from one variant without requiring additional de novo safety assessments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.