Abstract

A quantitative risk assessment of onboard hydrogen-powered vehicle storage, exposed to a fire, is performed. The risk is defined twofold as a cost of human life per vehicle fire, and annual fatality rate per vehicle. The increase of fire resistance rating of the storage tank is demonstrated to drastically reduce the risk to acceptable level. Hazard distances are calculated by validated engineering tools for blast wave and fireball, which follow catastrophic tank rupture in a fire, act in all directions and have larger hazard distances compared to jet fire. The fatality cash value, probabilities of vehicle fire and failure of thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate probability of emergency operations' failure to control fire and prevent tank rupture. The risk is presented as a function of fire resistance rating of onboard storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.