Abstract

This study addresses one of knowledge gaps in hydrogen safety science and engineering, i.e. a predictive model for calculation of deterministic separation distances defined by the parameters of a blast wave generated by a high-pressure gas storage tank rupture in a fire. An overview of existing methods to calculate stored in a tank internal (mechanical) energy and a blast wave decay is presented. Predictions by the existing technique and an original model developed in this study, which accounts for the real gas effects and combustion of the flammable gas released into the air (chemical energy), are compared against experimental data on high-pressure hydrogen tank rupture in the bonfire test. The main reason for a poor predictive capability of the existing models is the absence of combustion contribution to the blast wave strength. The developed methodology is able to reproduce experimental data on a blast wave decay after rupture of a stand-alone hydrogen tank and a tank under a vehicle. In this study, the chemical energy is dynamically added to the mechanical energy and is accounted for in the energy-scaled non-dimensional distance. The fraction of the total chemical energy of combustion released to feed the blast wave is 5% and 9%, however it is 1.4 and 30 times larger than the mechanical energy in the stand-alone tank test and the under-vehicle tank test respectively. The model is applied as a safety engineering tool to four typical hydrogen storage applications, including on-board vehicle storage tanks and a stand-alone refuelling station storage tank. Harm criteria to people and damage criteria for buildings from a blast wave are selected by the authors from literature to demonstrate the calculation of deterministic separation distances. Safety strategies should exclude effects of fire on stationary storage vessels, and require thermal protection of on-board storage to prevent dangerous consequences of high-pressure tank rupture in a fire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.