Abstract

In this study, a novel risk assessment framework designed for evaluating the challenges of plastic packaging waste management in the context of reverse logistics is introduced. The framework leverages Failure Mode Effect Analysis (FMEA) to address decision-making in a fuzzy environment. To augment the traditional FMEA risk criteria, encompassing severity (S), occurrence (O), and detection (D), three additional essential risk criteria are introduced: cost of failure (C), complexity of failure resolution (H), and impact on business (I). These newly incorporated criteria significantly enhance the capacity to convey the multifaceted risks inherent in reverse logistics for the plastic recycling sector. Furthermore, a comprehensive literature review and expert validation are conducted to identify ten distinct failure modes. To subjectively and objectively determine the risk criteria weightings, a combination of Analytic Hierarchy Process (AHP) and LOgarithmic Percentage Change-driven Objective Weighting (LOPCOW) is employed. Finally, the Additive Ratio Assessment (ARAS) approach is applied to prioritize such failure modes. Recognizing the inherent imprecision and uncertainty associated with human decision-making, the trapezoidal fuzzy set (TrFS) is adopted throughout all decision-making processes. To showcase the proposed framework effectiveness, the framework is applied as a case study to a waste plastic recycling manufacturer in Thailand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.