Abstract
Many recently constructed storage rings are catering to the needs of industrial applications in addition to providing the traditional services required for synchrotron radiation research. The Center for Advanced Microstructures and Devices (CAMD) was established by Louisiana State University to pioneer development of microfabrication while supporting research in basic science. Maxwell Laboratories designed, built, and successfully commissioned the 1.2 GeV, 400 mA light source for CAMD. Maxwell Laboratories has completed one X-ray lithography beamline at CAMD, and two more are now being manufactured. The completed beamline system, designed for thin resists, delivers photons up to 2 keV. The two beamlines currently under construction deliver photons up to 6 keV for thick (> 50 μm) resists, which play a role in the fabrication of 3-D nanostructures. One of the thick-resist beamlines includes an aspheric mirror that collimates the synchrotron-radiation beam in the horizontal plane while focusing it in the vertical direction - creating a sharp, uniform line image at the workpiece. The other thick-resist beamline has conventional planar optics. Beam position monitors (BPMs) developed for the CAMD beamlines provide a precise vertical profile of the beam by measuring differential photocurrents generated in the BPM probes. Beam power measurements are accomplished with a fixed-aperture calorimeter. Since each calorimeter is precisely calibrated before shipment, its thermal response in the beam is an accurate means to determine beam power for setting lithography exposure times or for computing beamline energy balance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have