Abstract

Statistical ensembles of flexible two-dimensional fluid membranes arise naturally in the description of many physical systems. Typically one encounters such systems in a regime of low tension but high stiffness against bending, which is just the opposite of the regime described by the Polyakov string. We study a class of couplings between membrane shape and in-plane order which break 3-space parity invariance. Remarkably there is only {\it one} such allowed coupling (up to boundary terms); this term will be present for any lipid bilayer composed of tilted chiral molecules. We calculate the renormalization-group behavior of this relevant coupling in a simplified model and show how thermal fluctuations effectively reduce it in the infrared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.