Abstract
This article continues and completes the previous one [18]. First of all, we present two methods of quantization associated with a linear connection given on a differentiable manifold, one of them being the one presented in [18]. The two methods allow quantization of functions that come from covariant tensor fields. The equivalence of both is demonstrated as a consequence of a remarkable property of the Riemannian exponential (Theorem 5.1) that, as far as we know, is new to the literature. In addition, we provide a characterization of the Schrödinger operators as the only ones that by quantization correspond to classical mechanical systems. Finally, it is shown that the extension of the above quantization to functions of a very broad type can be carried out by generalizing the method of [18] in terms of fields of distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.