Abstract

This article describes necessary conditions for chiral-type systems to admit Lax representation with values in simple compact Lie algebras. These conditions state that there exists a covariant constant tensor field with an additional property. It is proposed to construct in an invariant way some covariant tensor fields using the Lax representation of the system under consideration. These fields are constructed by taking linear differential forms with values in the Lie algebra that are constructed using the Lax representation of the system and substituting them into an arbitrary Ad-invariant form on the Lie algebra. The paper proves that such tensor fields are Killing tensor fields or covariant constant fields. The discovered necessary conditions for the existence of the Lax representation are obtained using a special case of such tensor fields associated with the Killing metric of the Lie algebra.

Highlights

  • В статье получены необходимые условия для того, чтобы система кирального типа допускала представление Лакса со значениями в простой компактной алгебре Ли

  • This article describes necessary conditions for chiral-type systems to admit Lax representation with values in simple compact Lie algebras. These conditions state that there exists a covariant constant tensor field with an additional property

  • It is proposed to construct in an invariant way some covariant tensor fields using the Lax representation of the system under consideration

Read more

Summary

Introduction

В статье получены необходимые условия для того, чтобы система кирального типа допускала представление Лакса со значениями в простой компактной алгебре Ли. В работе доказано, что такие тензорные поля являются полями Киллинга или ковариантно постоянными полями. Найденные необходимые условия существования представления Лакса получены с помощью частного случая таких тензорных полей, построенных для метрики Киллинга на алгебре Ли.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.