Abstract

The initial-boundary value problem for the KdV equation on a finite interval is analyzed in terms of a singular Riemann–Hilbert problem for a matrix-valued function in the complex k-plane which depends explicitly on the space–time variables. For an appropriate set of initial and boundary data, we derive the k-dependent “spectral functions” which guarantee the uniqueness of Riemann–Hilbert problem's solution. The latter determines a solution of the initial-boundary value problem for KdV equation, for which an integral representation is given. To cite this article: I. Hitzazis, D. Tsoubelis, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.