Abstract
We analyse an initial-boundary value problem for the mKdV equation on a finite interval by expressing the solution in terms of the solution of an associated matrix Riemann–Hilbert problem in the complex k-plane. This Riemann–Hilbert problem has explicit ( x, t)-dependence and it involves certain functions of k referred to as “spectral functions”. Some of these functions are defined in terms of the initial condition q( x,0)= q 0( x), while the remaining spectral functions are defined in terms of two sets of boundary values. We show that the spectral functions satisfy an algebraic “global relation” that characterize the boundary values in spectral terms. To cite this article: A. Boutet de Monvel, D. Shepelsky, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.