Abstract

Plant-related microbial communities are essential to plant growth and development, and empirical evidence suggests that inoculation with a synthetic microbial consortium can enhance plant performance; however, to manipulate the functions of these communities, we require a better understanding of the influencing factors. Here, we used the biodiversity ecosystem function (BEF) framework to specifically test the impact of community richness (1, 2, 4, or 8 strains per community) and antagonistic intensity on plant growth promotion in two kinds of nutritional environments. We found that increasing the richness of microbes can improve the accumulation of plant biomass, revealing that diversity effects were stronger than single-strain effects. The intensity of antagonism between highly diverse microbes may have a consistent negative effect on plant growth in comparison with the effects of communities with the same richness; intriguingly, this negative effect did not change positive BEF relationships. These results suggested that high diversity in the synthetic microbial consortia harboured stable and effective plant growth promotion capability and, in turn, also increased susceptibility to the negative effects of antagonism among microbial strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.