Abstract
Topological semimetals, including topological nodal point semimetals (TNPSs), topological nodal line state semimetals (TNLSs), and topological nodal surface semimetals (TNSSs), featuring zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) topological elements (TEs), respectively, have attracted widespread attention in recent years. In this work, based on first-principles calculations, we propose for the first time that three different (0D, 1D, and 2D) TEs are simultaneously present in a synthetic compound, HfIr3B4, with a P63/m type structure. In detail, HfIr3B4 hosts a Dirac point (DP) state at the K point, a TNL state in the kz = 0 plane, and a 2D TNS state in the kz = π plane, respectively. All sorts of topological elements, 0D, 1D, and 2D TEs, coexisting in the P63/m type HfIr3B4, provide an ideal platform to study the rich fermionic states and their related physical properties in this type of compound. In addition, because the 0D, 1D, and 2D TEs of HfIr3B4 are equally distributed in different energy ranges relative to the Fermi level, an approach is proposed to utilize individual TEs to build on-demand devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.